

Timber structures — Test methods — Determination of mechanical properties of wood based panels

The European Standard EN 789:2004 has the status of a
British Standard

ICS 79.040

National foreword

This British Standard is the official English language version of EN 789:2004. It supersedes BS EN 789:1996 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee B/518, Timber structures, which has the responsibility to:

- aid enquirers to understand the text;
- present to the responsible international/European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;
- monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this committee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the *BSI Catalogue* under the section entitled "International Standards Correspondence Index", or by using the "Search" facility of the *BSI Electronic Catalogue* or of *British Standards Online*.

This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 32, an inside back cover and a back cover.

The BSI copyright notice displayed in this document indicates when the document was last issued.

Amendments issued since publication

Amd. No.	Date	Comments

This British Standard was published under the authority of the Standards Policy and Strategy Committee on 16 March 2005

© BSI 16 March 2005

ISBN 0 580 45606 4

English version

Timber structures - Test methods - Determination of mechanical properties of wood based panels

Structures en bois - Méthodes d'essai - Détermination des propriétés mécaniques des panneaux à base de bois

Holzbauwerke - Prüfverfahren - Bestimmung der mechanischen Eigenschaften von Holzwerkstoffen

This European Standard was approved by CEN on 1 April 2004.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

Contents	page
Foreword	4
Introduction	5
1 Scope	6
2 Normative references	6
3 Terms and definitions	6
4 Symbols and abbreviations	6
5 Sampling	7
5.1 Sampling of panels.....	7
5.2 Sampling of specimens	7
6 Preparation of test pieces	9
6.1 Conditioning	9
6.2 Dimensions of test pieces	9
6.2.1 Methods of measurement	9
6.2.2 Measurements to be taken	9
6.3 Moisture content.....	9
6.3.1 Method of measurement	9
6.3.2 Measurements to be taken	9
6.4 Density	9
6.4.1 Method of measurement	9
6.4.2 Measurements to be taken	9
7 Bending properties	10
7.1 Test piece.....	10
7.2 Loading equipment.....	10
7.3 Loading method	10
7.4 Test procedure	10
7.4.1 Rate of application of load	10
7.4.2 Measurement of length and deformation	11
7.5 Expression of results.....	11
7.5.1 Modulus of elasticity and bending stiffness	11
7.5.2 Bending strength and moment capacity	12
8 Compression properties in the plane of the panel	12
8.1 Test piece.....	12
8.2 Loading equipment.....	12
8.3 Loading method	13
8.4 Test Procedure	13
8.4.1 Rate of application of load	13
8.4.2 Measurement of length and deformation	13
8.5 Expression of results.....	14
8.5.1 Compression of modulus of elasticity and stiffness	14
8.5.2 Compression strength	14
9 Tension properties	14
9.1 Test piece.....	14
9.2 Loading equipment.....	15
9.3 Loading method	15
9.4 Test procedure	15
9.4.1 Rate of application of load	15
9.4.2 Measurement of length and deformation	15
9.5 Expression of results.....	16
9.5.1 Tension modulus of elasticity and stiffness	16

9.5.2	Tension strength.....	16
10	Panel shear properties	16
10.1	Test piece	16
10.2	Loading equipment.....	17
10.3	Measurement of deformation	17
10.4	Loading method.....	17
10.5	Test procedure	18
10.5.1	Rate of application of load	18
10.5.2	Measurement of deformation.....	18
10.5.3	Failure mode	18
10.6	Expression of results	18
10.6.1	Panel shear modulus of rigidity.....	18
10.6.2	Panel shear strength.....	18
11	Planar shear properties	19
11.1	Test piece	19
11.2	Loading equipment.....	19
11.3	Loading method.....	19
11.4	Test procedures.....	19
11.4.1	Rate of application of load	19
11.4.2	Measurement of deformation.....	19
11.5	Expression of results	20
11.5.1	Planar shear strength.....	20
11.5.2	Planar shear modulus of rigidity.....	20
12	Test report.....	21
12.1	General data.....	21
12.2	Material data.....	21
12.3	Data of individual test pieces.....	22
12.4	Data of physical properties.....	22
12.5	Additional data.....	22
12.6	Sampling data.....	22
Annex A (normative) In-plane compression test pieces		23
Annex B (normative) Panel shear test pieces		26
Annex C (normative) Planar shear test pieces		28
Annex D (informative) Compression properties perpendicular to the plane of the panel (bearing)		29
Bibliography.....		32

Foreword

This document (EN 789:2004) has been prepared by Technical Committee CEN/TC 124 "Timber Structures", the secretariat of which is held by SFS.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2005, and conflicting national standards shall be withdrawn at the latest by April 2005.

This document supersedes EN 789:1995.

This document includes a Bibliography.

According to the CEN/CENELEC Internal Regulations, the following countries are bound to implement this European Standard: Austria, Belgium, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom.

10.2 Loading equipment

The loading equipment shall be capable of measuring the load to an accuracy of 1% of the maximum load applied to the test piece.

10.3 Measurement of deformation

When shear modulus of rigidity (G) is to be determined, deflection gauges shall be attached to both sides of the test piece, parallel to each other, as shown in Figure B1. The gauge length along which deformation is measured shall be the compression diagonal at 45° to the rails passing through the centre of the shear area. The gauge length shall be between 120 mm and 150 mm and centred between the rails along this line.

NOTE Attachment of the gauges may be with pins inserted in 3 mm diameter drilled holes or by glued mounts with the contact area being less than 5 mm diameter.

10.4 Loading method

The load applied shall be applied evenly over the top surface of the uppermost rail as single force acting along the longitudinal axis of the test piece, parallel to the rails. A suitable apparatus for applying equal loads to the rails is shown in Figure 6.

Dimensions in millimetres



Figure 6 - Loading arrangement for panel shear test

11.5 Expression of results

11.5.1 Planar shear strength

The planar shear strength shall be calculated from the following formula:

$$f_r = \frac{F_{\max}}{lb}$$

where

F_{\max} is the maximum load obtained during testing

b is the width of the test specimen

l is the length of the test specimen

The planar shear strength shall be calculated to three significant figures.

11.5.2 Planar shear modulus of rigidity

Using the data obtained plot the load-deformation graph. Use that section of the graph between $0,1F_{\max}$ and $0,4F_{\max}$ for a linear regression analyses.

The planar shear modulus of rigidity shall be calculated from the following formula:

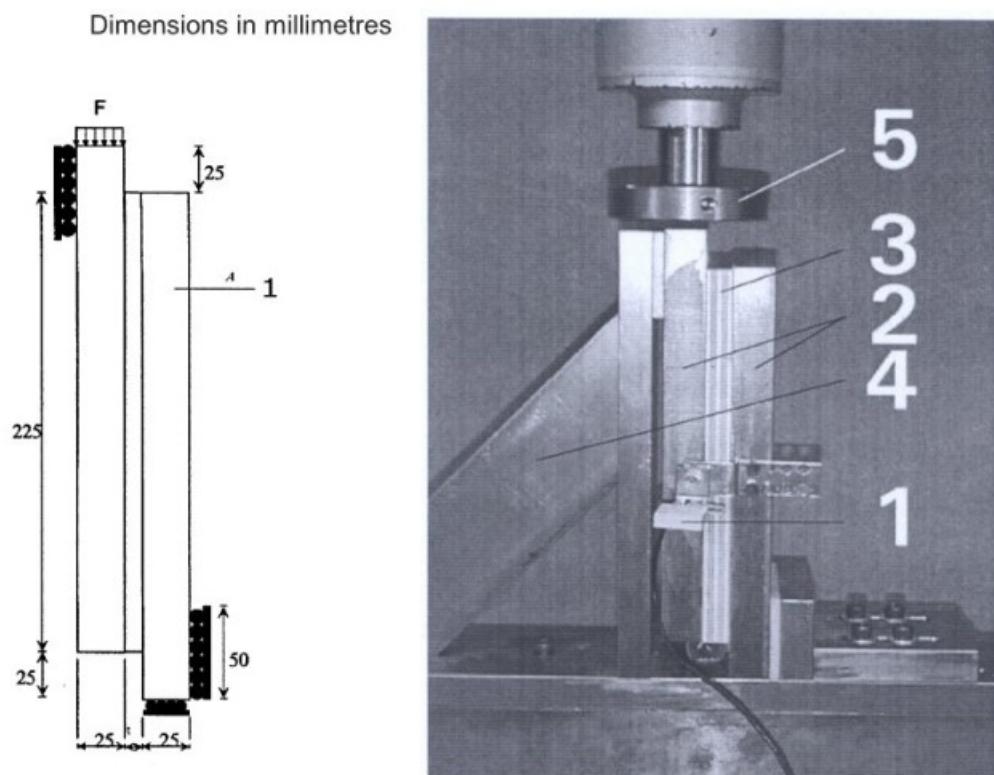
$$G_r = \frac{(F_2 - F_1) t}{(u_2 - u_1) lb}$$

where

t is the panel thickness of test specimen

$F_2 - F_1$ is the increment of load between $0,1F_{\max}$ and $0,4F_{\max}$, see Figure 3

$u_2 - u_1$ is the increment of deformation corresponding to $F_2 - F_1$ using the linear regression line, see Figure 3


u_2 and u_1 are means of the deformations measured on both faces of the test piece

b is the width of the test specimen

l is the length of the test specimen

The planar shear modulus of rigidity shall be calculated to an accuracy of 1%.

NOTE Guidance. Evaluation of the variability of G_r has shown that for panel product with 'high' G_r (small deformations) the coefficient of variation can be high (50%).

Key

1 Steel

Key

1 Gauge equipment for measuring deformation

2 Steel plates

3 Test piece

4 Test rig bracing for measuring deformation

5 Test machine - Compression plate and load cell.

Figure 7a - Loading arrangement for planar shear**Figure 7b - Example of planar shear test set up**

12 Test report

12.1 General

The test report shall include details of the test material, the method of test used and the test results. The amount of detail given under each of these headings will depend on the purpose of the tests.

12.2 General data

The following data shall be given:

- name of the testing organisation;
- name(s) of the supplier(s) of the test material;
- general description of the test material;
- place and date of sampling.

Dimensions in millimetres

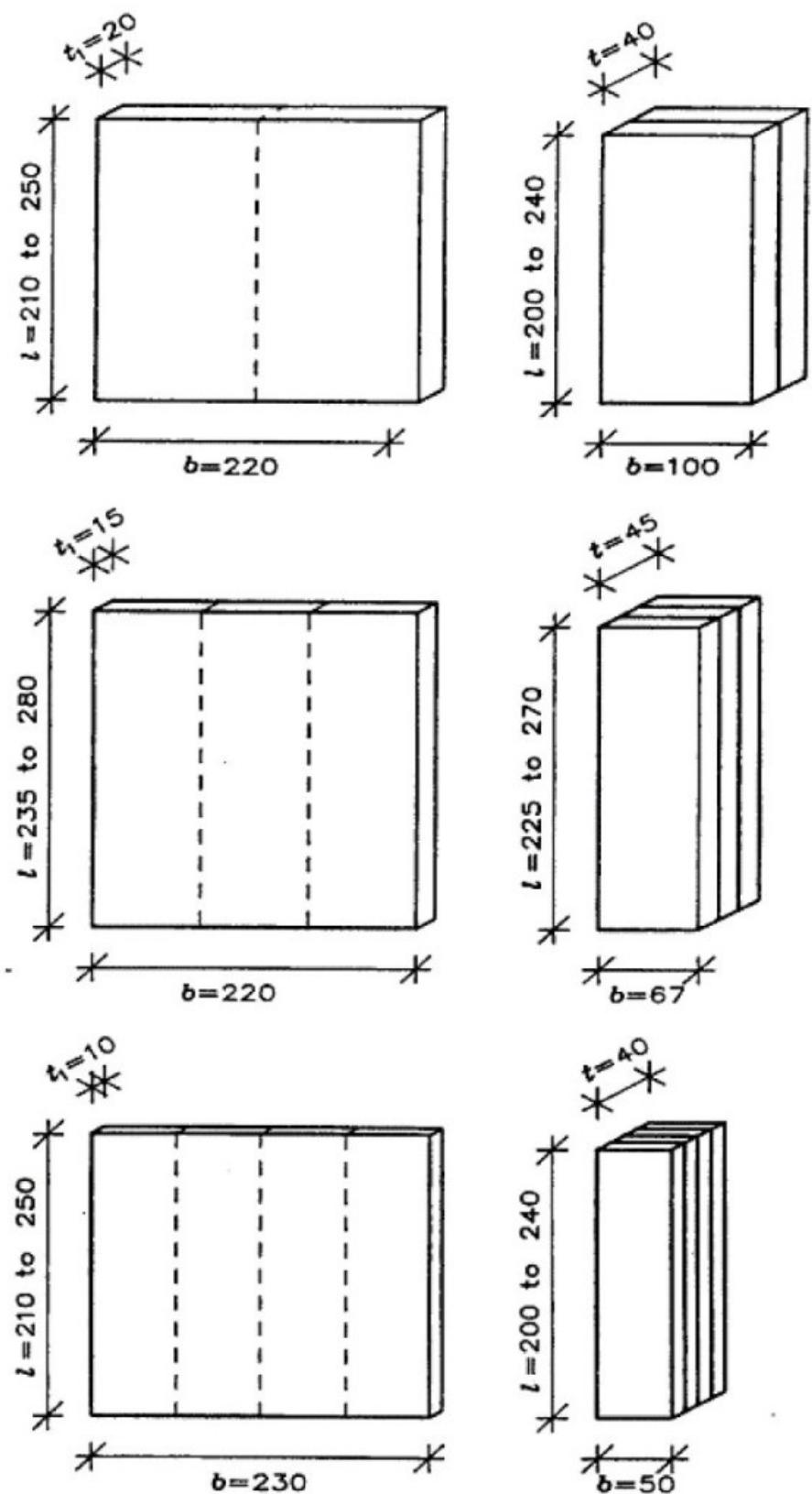


Figure A.2 - Examples of test pieces from panels having a thickness of less than 40 mm

Table A.1 - Typical sizes of test pieces from panels having a thickness in the range of 6mm to 40 mm

Panel thickness t_1 (mm)	Number of pieces cut from a specimen	Specimen		Test piece	
		Length l (mm)	Width b (mm)	Length l (mm)	Width b (mm)
$t_1 \geq 40$	1	-	220	$5t_1$ to $6t_1$	200
$20 \leq t_1 < 40$	2	210 – 250 to 400 – 480	210	200 – 240 to 390 – 470	100
$14 \leq t_1 < 20$	3	220 – 260 to 310 – 370	220	210 – 250 to 300 – 360	67
$10 \leq t_1 < 14$	4	210 – 250 to 270 – 320	230	200 – 240 to 260 – 310	50
$8 \leq t_1 < 10$	5	210 – 250 to 230 – 280	240	200 – 240 to 220 – 270	40
$6 \leq t_1 < 8$	7	210 – 245 to 260 – 300	340	200 – 250 to 250 – 290	40

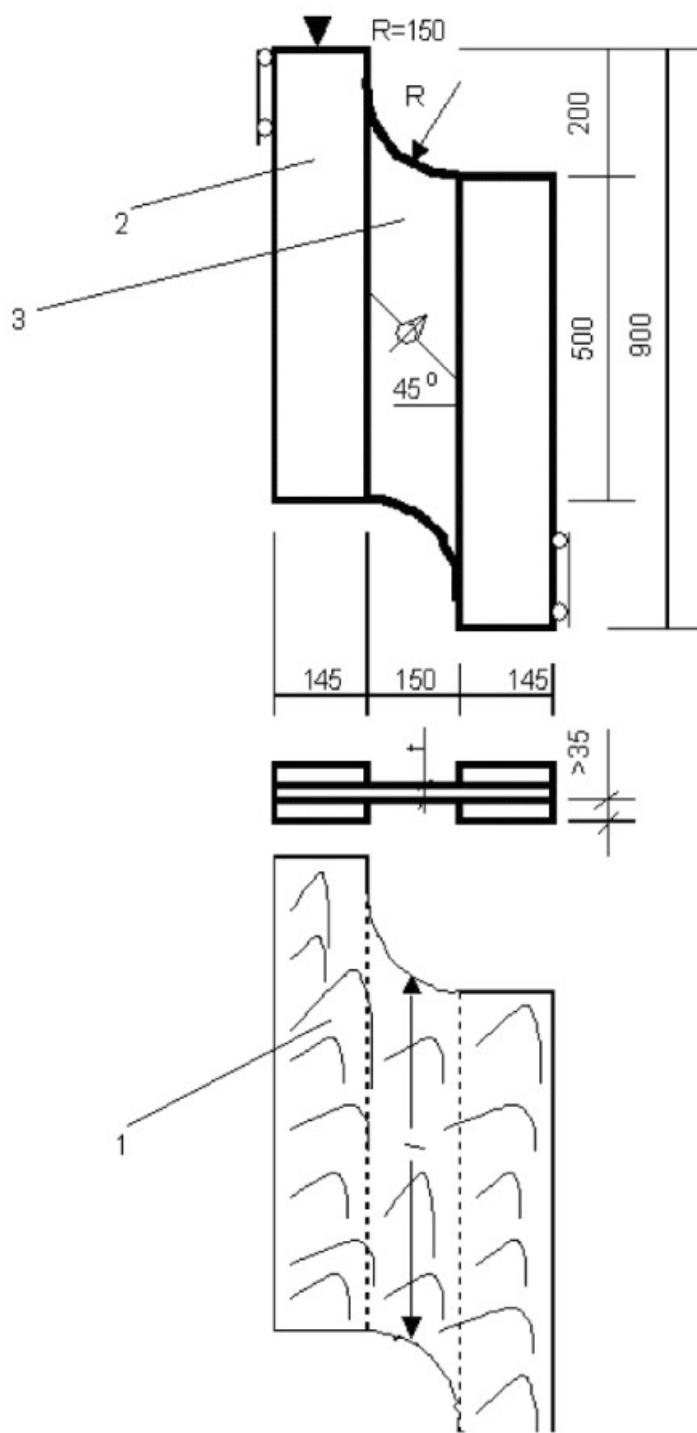
Annex B (normative)

Panel shear test pieces

The test piece shall be rectangular in cross-section. The thickness of the test piece shall be equal to the thickness of the specimen as measured. Other dimensions of the test piece are given in Figure B.1.

NOTE 1 With certain panel materials, constructions and thicknesses, valid results may only be obtainable either in the longitudinal or the lateral direction.

Timber rails having minimum dimensions of 35 mm x 145 mm x 700 mm long shall be bonded to both sides of the test piece at each edge. The width of the rails may be increased to eliminate a shear failure between the rails and the test piece. The rails shall be spaced (150 ± 2) mm apart with their ends even with the test piece at two diagonally opposite corners as shown in Figure B.1. Prior to bonding, the rails and the test piece shall be conditioned to the approximate moisture content at which the test piece is to be tested.


NOTE 2 Previous experience has shown that rails should be of "good quality" material with a minimum compression strength parallel to grain of 35 N/mm² and a minimum bending E_m of 9000 N/mm². This is to ensure that the stiffness of the rails is greater than that of the test panels and to ensure the stresses in the rails remain below 40% of ultimate.

A suitable PRF adhesive shall be used to attach the rails.

NOTE 3 Some panel materials have high panel shear strength but insufficient internal bond and planar shear strength to transfer these stresses from the rails into the panel. In these cases, the rail may separate from the test piece. This may be prevented by applying lateral pressure to the rails, for example by the use of bolts.

Steel rails may be substituted for timber rails and clamping may be substituted for bonding provided that no crushing of the test piece or slippage between rail and test piece occurs. Special rail facings may be needed to develop adequate friction between rails and test piece. The clamping method is particularly well suited to reconstituted panel materials that would otherwise require bolting to prevent planar shear in the test piece under the rails.

Dimensions in millimetres

Key

- 1 Panel
- 2 Rail
- 3 Test piece
- 4 Radius
- 5 Load
- t Thickness

Figure B.1 - The specimen and test set up for panel shear test

Annex C (normative)

Planar shear test pieces

The test piece shall be rectangular in cross-section and its thickness shall be equal to the thickness of the panel. The width of the test piece shall be (100 ± 1) mm and its length shall be (225 ± 1) mm.

Thickness measurement shall be carried out in the four corners of the test piece 10 mm from edges. If the difference between maximum and minimum thickness is above 0,5 mm the panel thickness is regarded as uneven. Sanding of the test piece on two sides prior to gluing between steel plates is then necessary.

If test pieces fail in the surface layer with only a few particle/fibres adhering to the metal plate. Then subsequent test pieces may be lightly sanded on both sides prior to gluing. The amount of material removed from each face by sanding should not exceed 0,5 mm or 5% of the panel thickness, whichever is the lower.

The test piece shall be bonded between two steel plates, rectangular in cross-section, 25 mm thick, 250 mm long and having a minimum width of 100 mm. The steel plates shall be bonded to the test piece with an adhesive sufficient to preclude a significant contribution of adhesive creep to the measured deformation. One end of each steel plate shall project 25 mm beyond the end of the test specimen as shown in Figure 7a. A rig should be used during gluing to ensure that the ends of the two steel plates remain parallel to each other.

NOTE 1 Guidance. A low-temperature-hardening, epoxy-type adhesive, which debonds when it is heated to 150°C - 200°C , has been found to be suitable.

NOTE 2 Guidance. Steel plates 2°mm to 5 mm wider than the test piece can be used to make the gluing of steel plates to the specimen easier with regard to surplus glue.

NOTE 3 Guidance. If only the planar shear strength is to be tested, the test may be carried out using thinner, disposable plates, bonded to the test pieces. These then fit into modified 25 mm thick steel test plates, which have machined recesses. This method has been found to produce unreliable measurements of deformation and should not therefore be used for the calculation of planar shear modulus.

Annex D (informative)

Compression properties perpendicular to the plane of the panel (bearing)

D.1 Test piece

The cross-sectional dimensions of the test piece shall be 45 mm x 70 mm. The test piece shall comprise a number of layers where each layer is a complete thickness of the panel being tested. The number of layers used shall be selected so that the total height of the test piece is between 50 mm and 90 mm. The individual layers shall be bonded together to produce a composite test piece with thin, rigid glue-lines. The composite test piece shall then be machined to a square cross- section as illustrated in Figure D.1. The upper and lower bearing surfaces shall be plane and parallel. Following machining, the test pieces shall be conditioned according to Clause 6.1.

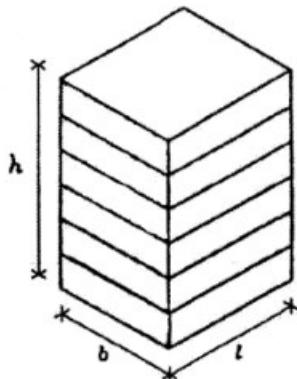


Figure D.1 – Composite glued test piece for compression test perpendicular to the plane comprising a number of identical layers

D.2 Loading equipment

The loading equipment shall be capable of measuring the load to an accuracy of 1% of the load applied to the test piece.

D.3 Loading method

The test piece shall be mounted vertically between the test machine platens ensuring that the platens extend over each of the four sides of the test piece by a distance at least equal to the width of the test piece. No initial stresses shall be induced in the test piece during its positioning in the test machine.

The test piece shall be loaded concentrically.

NOTE This can be achieved using spherically seated loading-heads.

After an initial load has been applied, the loading-heads shall be locked to prevent rotation or angular movement during the test.

D.4 Test procedure

D.4.1 Rate of application of the load

The load F shall be applied at a constant rate of cross-head movement throughout the test. The rate of loading shall be adjusted so that the maximum load $F_{c,90,\max}$ is reached within (300 ± 120) s.

NOTE This rate should be determined from the results of preliminary tests.

D.4.2 Measurement of deformation

The deformation of the test piece between the top and bottom platens of the test machine shall be measured continuously throughout the test to an accuracy of 0,005 mm and a load-deformation curve produced.

D.5 Expression of results

D.5.1 Strength perpendicular to the plane of the panel

The compressive strength $f_{c,90}$ shall be determined from the formula:

$$f_{c,90} = \frac{F_{c,90,\max}}{bl}$$

The compressive strength shall be calculated to three significant figures. The method for determining $F_{c,90,\max}$ is illustrated in Figure D.2

The symbols are as given in Clause 4.

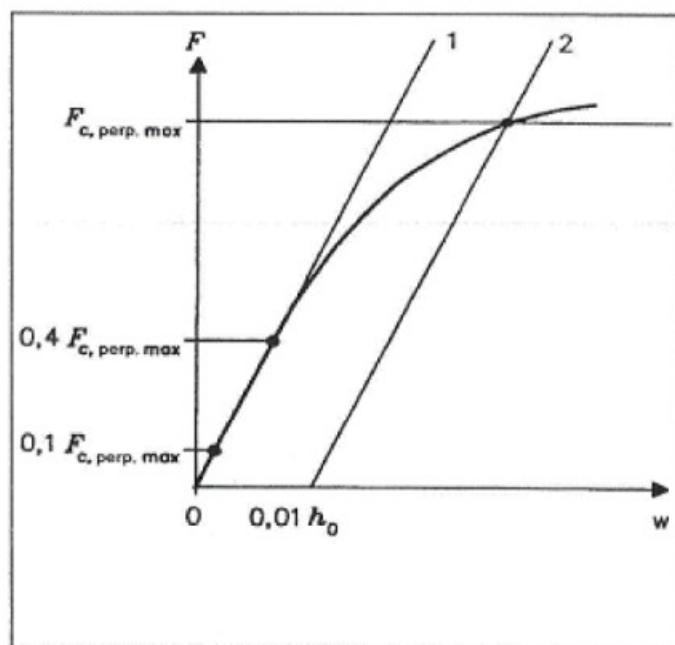


Figure D.2 – Load – deformation diagram for the compression test perpendicular to the plane of the panel

D.5.2 Compression modulus of elasticity perpendicular to the plane of the panel

Using the data obtained plot the load-deformation graph. Use that section of the graph between $0,1F_{\max}$ and $0,4F_{\max}$ for a linear regression analyses.

The modulus of elasticity $E_{c,90}$ shall be calculated from the formula:

$$E_{c,perp} = \frac{(F_2 - F_1)l_1}{(u_2 - u_1)bl}$$

where

$F_2 - F_1$ is the increment of load between $0,1F_{\max}$ and $0,4F_{\max}$, see Figure D.2.

$u_2 - u_1$ is the increment of deformation corresponding to $F_2 - F_1$ using the linear regression line, see Figure 3.

u_2 and u_1 are means of the deformations measured on both faces.

The modulus of elasticity shall be calculated to three significant figures.

D.6 Test report

The test report shall include the details set out in Clause 12.

Bibliography

EN 13986, *Wood-based panels for use in construction – Characteristics, evaluation of conformity and marking*.

blank

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover.
Tel: +44 (0)20 8996 9000. Fax: +44 (0)20 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: +44 (0)20 8996 9001.
Fax: +44 (0)20 8996 7001. Email: orders@bsi-global.com. Standards are also available from the BSI website at <http://www.bsi-global.com>.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre.
Tel: +44 (0)20 8996 7111. Fax: +44 (0)20 8996 7048. Email: info@bsi-global.com.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration.
Tel: +44 (0)20 8996 7002. Fax: +44 (0)20 8996 7001.
Email: membership@bsi-global.com.

Information regarding online access to British Standards via British Standards Online can be found at <http://www.bsi-global.com/bsonline>.

Further information about BSI is available on the BSI website at <http://www.bsi-global.com>.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

Details and advice can be obtained from the Copyright & Licensing Manager.
Tel: +44 (0)20 8996 7070. Fax: +44 (0)20 8996 7553.
Email: copyright@bsi-global.com.